# A Supersymmetric One Higgs Doublet Model

Rhys Davies

Mathematical Institute, University of Oxford

Particle Theory Journal Club, Oxford, 5<sup>th</sup> May 2011

Introduction

Supersymmetrising the Higgs

The Supersymmetric One Higgs Doublet Model (SOHDM)

#### Introduction

Supersymmetrising the Higgs

The Supersymmetric One Higgs Doublet Model (SOHDM)

#### Overview

- Supersymmetry motivated by its solution of the hierarchy problem.
- It typically introduces other problems:
  - Baryon number violation by dimension four and five operators:

$$W \supset U^c D^c D^c , QQQL \dots$$

- Large flavour-changing neutral current (FCNC) couplings.
- ullet Large CP violation, e.g. fermion electric dipole moments.

#### Overview

- The Supersymmetric One Higgs Doublet Model (SOHDM):
  - One electroweak doublet gets a VEV and couples to fermions.
  - There is an anomaly-free global R-symmetry.<sup>1</sup>
- This has some very nice consequences:
  - The R-symmetry prevents baryon number violation.
  - Flavour is tied to SUSY breaking, and FCNC's are suppressed.
  - $\bullet$  CP violation is greatly reduced compared to the MSSM.

 $\mathbb{Z}_n$  for n > 4.

<sup>&</sup>lt;sup>1</sup>Assumed to be  $U(1)_R$  throughout, but conclusions are unchanged if we take

Introduction

Supersymmetrising the Higgs

The Supersymmetric One Higgs Doublet Model (SOHDM)

# The usual story: without supersymmetry

- In the Standard Model:
  - One scalar doublet:  $H \sim (\mathbf{1}, \mathbf{2}, \frac{1}{2})$ .  $\langle H \rangle := \frac{v}{\sqrt{2}} \simeq 174 \text{GeV}$ .
  - $SU(2)\times U(1)_Y \xrightarrow{\langle H\rangle} U(1)_{\rm EM}$ . Gauge boson masses:

$$\rho := \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

• Fermion masses generated by

$$\mathcal{L}_{\mathrm{Yuk}} = \lambda_U H Q U^c + \lambda_D H^{\dagger} Q D^c + \lambda_E H^{\dagger} L E^c$$

### The usual story: the MSSM

- Supersymmetry gives H a spin- $\frac{1}{2}$  partner  $\tilde{H}$ . Two problems:
  - At the quantum level,  $SU(2)\times U(1)_Y$  is now anomalous.
  - Yukawa couplings come (most simply) from trilinear superpotential terms. But holomorphy forbids  $\int d^2\theta \, \lambda_D H^{\dagger} Q D^c$ .
- Easy to solve: introduce  $H_d \sim (1, 2, -\frac{1}{2})$ , and relabel H as  $H_u$ .

$$\mathcal{L}_{ ext{Yuk}} = \int \! d^2 heta \left( \lambda_U \, oldsymbol{H_u} oldsymbol{Q} oldsymbol{U}^c + \lambda_D \, oldsymbol{H_d} oldsymbol{Q} oldsymbol{D}^c + \lambda_E \, oldsymbol{H_d} oldsymbol{L} oldsymbol{E}^c 
ight)$$

• Arrange for  $\langle H_d \rangle \neq 0$  as well. Still get  $\rho = 1$ , and all fermions massive.

# The MSSM Higgs sector in (more) detail

$$\mathcal{L}_{\text{Higgs}} = \int d^2\theta \,\mu \, \boldsymbol{H_u H_d} - m_u^2 |H_u|^2 - m_d^2 |H_d|^2 - B\mu H_u H_d + \dots$$

- Given all positive soft masses-squared, radiative corrections drive  $m_u^2 < 0$ , hence  $\langle H_u \rangle \neq 0$ .
- For  $B\mu \neq 0$ ,  $H_u$  and  $H_d$  mix, so we also get  $\langle H_d \rangle \neq 0$ .
- Phenomenology depends on  $\tan \beta := \frac{v_u}{v_d}$ .

# One Higgs doublet models

• After supersymmetry is broken, we may expect to generate

$$\mathcal{L} = \lambda_D H_u^{\dagger} Q D^c + \lambda_E H_u^{\dagger} L E^c$$

So do we need  $H_d$ ?

- Ibe et al. (arXiv:1012.5099) construct models in which  $H_d$  is replaced with a number of other fields, for anomaly cancellation. Problems:
  - New fields cancel anomalies, but otherwise appear arbitrary.
  - Difficult to generate sufficiently large masses for all new particles.
  - Electroweak symmetry breaking becomes much more complicated.
- Our idea: keep  $H_d$ , but forbid its VEV and Yukawa couplings.



Introduction

Supersymmetrising the Higgs

The Supersymmetric One Higgs Doublet Model (SOHDM)

### The SOHDM — Fermion masses

•  $H_d$  no longer a 'Higgs', so change notation:

$$m{H} \sim (m{1}, m{2}, rac{1}{2}) \;, \; m{\eta} \sim (m{1}, m{2}, -rac{1}{2})$$

• Let X be a chiral SUSY-breaking spurion:  $\langle X \rangle = F_X \theta^2$ . Yukawas:

$$\mathcal{L}_{\text{Yuk}} = \int d^2 \theta \, \lambda_U \, \boldsymbol{H} \boldsymbol{Q} \boldsymbol{U}^c + \int d^4 \theta \, \frac{\boldsymbol{X}^{\dagger} \boldsymbol{H}^{\dagger}}{M^2} (\lambda_D' \, \boldsymbol{Q} \boldsymbol{D}^c + \lambda_E' \, \boldsymbol{L} \boldsymbol{E}^c)$$

where M is the messenger scale.

 The bottom quark mass now provides information about SUSY breaking

$$\frac{\lambda_b' F_X}{M^2} 174 \text{GeV} \simeq 5 \text{GeV} \quad \Rightarrow \quad \frac{F_X}{M^2} \simeq \frac{1}{35 \lambda_b'}$$

So, assuming  $\lambda_b' \lesssim 1$ , we get  $\frac{F_X}{M^2} \gtrsim \frac{1}{35}$ .



### The SOHDM — Higgs sector

- We need a weak-scale  $\mu$  term (for chargino masses), but do *not* want a  $B\mu$  term (to ensure  $\langle \eta \rangle = 0$ ). R-symmetry!
- To implement Giudice-Masiero mechanism, take global  $U(1)_R \times \mathbb{Z}_2$ .

| Field | Gauge rep.           | R-charge | $\mathbb{Z}_2$ -parity |
|-------|----------------------|----------|------------------------|
| H     | $(1,2,rac{1}{2})$   | 0        | 1                      |
| η     | $(1,2,-	frac{1}{2})$ | 2        | -1                     |
| X     | (1, 1, 0)            | 2        | -1                     |

$$\mathcal{L}_{\mu} = \int d^4 \theta \, rac{m{X}^{\dagger}}{M} \lambda_{\mu} m{H} m{\eta} \ \ \, \Rightarrow \ \ \, \mu = \lambda_{\mu} rac{F_X}{M}$$

All matter: R-charge 1.  $D^c$  and  $E^c$  are  $\mathbb{Z}_2$ -odd.

• Note that  $\langle \mathbf{X} \rangle = F_X \theta^2$  breaks SUSY and  $\mathbb{Z}_2$ , but not  $U(1)_R$ .



## The SOHDM — Gauge sector

- Gauginos have R-charge 1, so cannot have Majorana masses.
- Introduce new chiral adjoints,  ${\bf O} \sim ({\bf 8,1},0)$  ,  ${\bf T} \sim ({\bf 1,3},0)$ , with R-charge 0.
- For acceptable Dirac masses, need a D-term spurion:  $\langle \mathbf{W}'_{\alpha} \rangle = D' \theta_{\alpha}$

$$\mathcal{L}_{D} = \int d^{2}\theta \, \frac{\boldsymbol{W}_{\alpha}'}{M} \left( \lambda_{G} \operatorname{Tr}(\boldsymbol{O}\boldsymbol{G}^{\alpha}) + \lambda_{W} \operatorname{Tr}(\boldsymbol{T}\boldsymbol{W}^{\alpha}) \right)$$

$$\rightarrow \qquad \qquad M_{3} \operatorname{Tr}(\widetilde{O}\widetilde{G}) + M_{2} \operatorname{Tr}(\widetilde{T}\widetilde{W}) + \dots ,$$

• In a concrete scenario realising this (Benakli and Goodsell, arXiv:1003.4957), the adjoint scalars are significantly heavier.

### The SOHDM — Massless Bino

- We did not introduce  $S \sim (1, 1, 0)$ , because:
  - It interferes with breaking of SUSY and electroweak symmetry.
  - We don't need to!
- In the absence of such an S, the bino is massless! (Actually the combination  $-\tilde{\eta}^0 + \frac{\mu}{M_Z \sin \theta_W} \tilde{B}^0$ )
- Surprisingly, this is allowed experimentally. Intuition:
  - At low energies, interacts only via sfermion exchange.
  - Behaves like a neutrino, with coupling suppressed by  $\frac{M_Z}{\tilde{m}}$ .
  - See Dreiner et al. (arXiv:0901.3485) for details.
- A massless bino cannot be dark matter, but that's okay.

### The SOHDM — Summary

- Single Higgs doublet down-type Yukawas after SUSY breaking.
- Combined F-term and D-term SUSY breaking.
- Low SUSY breaking/messenger scales ( $\lesssim 100 \text{ TeV}$ ).
  - This suggests gauge mediation, but no  $\mu/B\mu$  problem!

### The SOHDM — Summary

- Anomaly free *unbroken R*-symmetry:
  - No  $B\mu$  term or A-terms.
  - Must introduce chiral adjoints to give gauginos Dirac masses.
- Massless mostly-bino neutralino. Can be given a weak-scale mass, but requires more model building.

# Comparison to similar models

- Kribs, Poppitz, Weiner's "Minimal R-Symmetric Standard Model" (arXiv:0712.2039)
  - Has  $H_u$  and  $H_d$ , each with R-charge 0.  $\mu$  term forbidden.
  - Chargino masses require introduction of  $R_u$ ,  $R_d$  with R-charge 2.
- If  $\mathcal{R}_{H_d}=2$ , R-symmetry must be explicitly broken at  $\sim 5 \text{GeV}$ . (e.g. Nelson et al. — arXiv:hep-ph/0206102)

Introduction

Supersymmetrising the Higgs

The Supersymmetric One Higgs Doublet Model (SOHDM)

# Higgs sector

- H is now a pure Standard Model Higgs doublet. The physical Higgs mass saturates the MSSM upper bound at tree and one-loop levels.
- $\eta^0$  is the only visible-sector field with  $\mathcal{R}=2$ . It appears as a complex scalar (i.e. *one* resonance in a collider).

#### Neutrino masses

• Lepton number violation via neutrino Majorana masses is allowed:

$$\frac{1}{M_*} \int \! d^2\theta \, \epsilon_{ab} \epsilon_{cd} \boldsymbol{H}^a \boldsymbol{H}^c \boldsymbol{L}^b \boldsymbol{L}^d \supset \frac{1}{M_*} \int \! d^2\theta \, (\boldsymbol{H}^0)^2 (\nu_L)^2 \ ,$$

• Luckily, cannot arise from SUSY breaking, due to  $\mathbb{Z}_2$  symmetry:

$$\int d^4\theta \, \frac{\boldsymbol{X}^{\dagger}}{M^3} \boldsymbol{H^2} \boldsymbol{L^2} \quad \text{forbidden}$$

• Standard seesaw: introduce singlets N with R-charge 1:

$$\mathcal{L}_{
u} = \int\! d^2 heta \left( M_R^2 oldsymbol{N}^2 + \lambda_{
u} oldsymbol{H} oldsymbol{L} oldsymbol{N} 
ight)$$

So  $M_* = M_R$ .

# Flavour changing neutral currents

- Down-type Yukawas and scalar soft masses arise after SUSY breaking.
- Minimal flavour violation (MFV) therefore 'almost automatic'.
  - Only FCNC couplings are quark-squark-gluino/neutralino, proportional to V<sub>CKM</sub>.
  - No significant  $\mu \to e \gamma$  etc.
- $K \bar{K}$  mixing affected in MSSM by  $\frac{1}{m_{\bar{G}}} \tilde{d}_R^{\dagger} \tilde{s}_L \bar{d}_R s_L$ . Forbidden by R-symmetry. See Kribs, Poppitz, Weiner (arXiv:0712.2039).

# CP violation, proton decay

- Phases from A-terms are now gone.
- MFV suppresses off-diagonal soft masses, which may have large phases.
- Usual one-loop electric dipole-moments are not generated.

• The R-symmetry forbids baryon number violation.

#### Conclusion

- With only a small addition to the MSSM spectrum (chiral adjoints), we can address a number of issues in a nice way.
- The SOHDM (and R-symmetric models more generally) should be taken seriously in LHC searches.